
CMPT 409/981: Quantum Circuits and Compilation

Assignment 3

Due November 18th at the start of class
on paper or by email to the instructor

Question 1 [10 points]: Exact synthesis over the reals

In this question we will investigate the number-theoretic characterization and synthesis of circuits
over G = {X,CX,CCX,H,CH}. Recall that CX = CNOT , CCX is the Toffoli gate, and CH is
the controlled-Hadamard gate

CH =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2
−1√
2

 =
1√
2


√

2 0 0 0

0
√

2 0 0
0 0 1 1
0 0 1 −1


We will denote circuits over G by 〈G〉 and unitaries over a ring R by U(R). We define the rings

• D = { a
2b
| a, b ∈ Z}

• D[
√

2] = {a+ b
√

2 | a, b ∈ D}

• Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}

where Z[
√

2] is the ring of integers of D[
√

2]. As in the Clifford+T case, lde(u) for u ∈ D[
√

2] is the

smallest k such that
√

2
k
u ∈ Z[

√
2]. We extend lde to vectors and matrices in the obvious way —

i.e. the smallest k such that
√

2
k
U has entries in Z[

√
2] for a matrix U .

Observe that
〈G〉 ⊆ U(R)

We will show that 〈G〉 ⊇ U(R) by giving an exact synthesis method for U(R).

1. Show first that CH cannot be written as a circuit over {X,CX,CCX,H} (hint: look at

the entries of
√

2
lde(U)

U for any U ∈ {X,CX,CCX,H}. Can you see any property which is
preserved by multiplication and that X, CX, CCX and H gates satisfy but CH does not?)

2. Recall that a ≡ b mod 2 for a, b ∈ R means there exists some k ∈ R such that a = b + 2k,
where R is a ring such as Z or Z[

√
2].

Let u, v ∈ Z[
√

2] and suppose u = a+ b
√

2, v = c+ d
√

2. Show that u ≡ v mod 2 if and only
if a ≡ c mod 2 and b ≡ d mod 2.
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3. Show that for u, v ∈ Z[
√

2], if u ≡ v mod 2 and u, v 6= 0, then u±v√
2

=
√

2w where w ∈ Z[
√

2].

4. Given a vector ~u ∈ Z[
√

2]d (i.e. a dimension d vector ~u over Z[
√

2]) such that ||~u||2 =∑d
i=1 |ui|2 = 2k for some k ≥ 1, show that either

• ~u =
√

2~v for some ~v ∈ Z[
√

2]d (i.e. ~u is divisible by
√

2), or

• there exist two entries ui, uj of ~u such that ui ≡ uj mod 2.

Hint: remember that for any u ∈ Z[
√

2],
√

2u ∈ Z[
√

2].

5. Recall that for a 2 × 2 matrix U , a two-level d × d matrix Ui,j is one that acts like U on
the subspace span{|i〉, |j〉} of Cd, and the identity everywhere else. Explicitly,

Ui,j |i〉 = 〈0|U |0〉|i〉+ 〈1|U |0〉|j〉
Ui,j |j〉 = 〈1|U |0〉|i〉+ 〈1|U |1〉|j〉
Ui,j |h〉 = |h〉, h 6= i, j

Show that for ~u ∈ Z[
√

2]d where ||~u||2 = 2k, k ≥ 1. there exist a sequence U1 · · ·Uk of two-
level matrices Hi,j of dimension d× d such that U1 · · ·Uk~u =

√
2~v for some vector v ∈ Z[

√
2]d

of norm ||~v||2 = 2k−1.

The fact that ||~v||2 = 2k−1 assures us that this process is terminating, and in particular
terminates when we reach norm ||~u||2 = 1, at which point

~u = (−1)b|i〉 = Zb
0,iX0,i|0〉 = H0,iX

b
0,iH0,iX0,i|0〉

for some i, giving us our column lemma for this gate set.

6. Now synthesize a sequence of two-level H, X, and Z matrices implementing the following
matrix:

1

2
√

2


0 0 2

√
2 0√

2 1 +
√

2 0 −1 +
√

2√
2 1−

√
2 0 −1−

√
2

2 −
√

2 0
√

2


Question 2 [10 points]: The Matsumoto-Amano normal form

Recall that single-qubit Clifford+T circuits are single-qubit circuits over {H,T, S := T 2}, while
single-qubit Clifford circuits are those over {H,S}. We denote these by T = 〈H,T 〉 and C = 〈H,S〉,
respectively. In this question we will investigate a complete theory of single-qubit Clifford+T
circuits due to Matsumoto and Amano.

Theorem 1 (Matsumoto-Amano normal form). Any single-qubit Clifford+T circuit can be written
uniquely in the form

(T | I)(HT | SHT )∗C

where the above expression should be interpreted as a regular expression and the final C means
any single-qubit Clifford operator.
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For example, TSHTHTHSH, while TTTTT is not.

1. A particularly important subset of C is the subset consisting of circuits over

I =

[
1 0
0 1

]
, S

[
1 0
0 i

]
, X := HSSH =

[
0 1
1 0

]
, ω := (HS)3 =

[
ω 0
0 ω

]
Show that for any circuit C over this set C0 = {I, S,X, ω},

CH = (H | SH)C ′

(i.e. CH = HC ′ or CH = SHC ′) for some (possibly empty) circuit C ′ over C0.
Hint: it suffices to show that for every gate g in C0, there exists a circuit C ′ over C0 such that
gH = HC ′ or gH = SHC ′.

2. Use the previous result to show that for any Clifford circuit C, C = (I | H | SH)C ′ for some
circuit C ′ over C0.
Hint: write an arbitrary Clifford operator as C1HC2H · · ·Ck−1HCk where each Ci is a circuit
over C0 and perform induction on k.

3. Show that for any circuit C over C0, there exists a circuit C ′ over C0 such that CT = TC ′

Hint: similar to CH, it suffices to show that for every gate g in C0, there exists a circuit C ′

over C such that gT = TC ′.

4. Finally, show that for any circuit C over {H,T}, C can be written in Matsumoto-Amano
normal form,

(T | I)(HT | SHT )∗C.

Hint: write C = C1TC2T · · ·Ck−1TCk where each Ci is Clifford and use induction over k

At this point you may notice that you’ve given a re-writing procedure which translates an
arbitrary Clifford+T circuit (single qubit) into Matsumoto-Amano normal form. In particular, you
will have only used commutation rules of the form gH → HC ′ and gT → TC ′, as well as some
basic simplifications such as TT → S, HH → I, and Ig → g for any gate g.

It turns out that these normal forms are also unique, in that every distinct normal form circuit
is equal to a distinct unitary matrix. Since we have a complete re-writing theory which produces
unique normal forms and the re-write rules are T -count non-increasing, we know immediately that
the Matsumoto-Amano normal form is in fact T -count minimal. In particular, for any T -count
minimal circuit C, C can be re-written uniquely in Matsumoto-Amano normal form as a circuit
C ′, where τ(C ′) ≤ τ(C) for τ(C) the T -count of C.
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Question 3 [3 points]: Linear reversible synthesis

When re-synthesizing sub-circuits which involve ancillas, it is sometimes the case that you need to
efficiently synthesize some “glue” mapping one linear combination of bits |A1~x〉 to another |A2~x〉
for A1, A2. Given two such linear operators

A1 =


1 1 0 0
0 0 1 0
1 1 0 1
0 1 0 0
0 0 1 1

 , A2 =


0 0 1 1
0 1 0 0
0 0 0 1
1 1 1 1
0 1 0 1

 .
1. Find some 5× 5 matrix A over Z2 such that AA1 = A2.

Hint: use Gaussian elimination over Z2 to write A1 and A2 in reduced echelon form. Then
note that if E1E2 · · ·EkA1 = F1F2 · · ·FlA2,

(F−1l · · ·F−12 F−11 E1E2 · · ·Ek)A1 = A2

2. Synthesize a 5-qubit circuit over CNOT and SWAP gates implementing the unitary U :
|~x〉 7→ |A~x〉 where A is the unitary you found in the previous question. How does the number
of gates compare to the length of your initial factorization A = F−1l · · ·F−12 F−11 E1E2 · · ·Ek?

Question 4 [2 points]: The Phase Polynomial method

Calculate the phase polynomial representation of the following CNOT -dihedral circuit:

x1 • • x1

x2 • Z • x2

x3 • x3

x4 • S x4

=

x1 T • T † • • T • T † • • x1

x2 T • T † T † • Z T • T † T † • x2

x3 T • T • x3

x4 T • T • S x4

How many T -gates are required to implement this operator via re-synthesis? Remember that
T 2 := S.
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